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Abstract:

Aim

Microclimate amelioration between neighboring plants may be more common in environments 

with greater abiotic stress. This pattern has been shown in deserts, alpine systems, and forests, 

but has not been explored along urban severity gradients. In this study we hypothesized that 

strong temperature gradients in the greater Los Angeles area might be driving changes in 

microclimate amelioration in annual grasslands.

Location

Twenty-seven sites along a 100km latitudinal, 72km longitudinal urban gradient across the 

greater Los Angeles area in California, USA.

Methods

We measured macro- and microclimate variables during the 2019 growing season. We took 

measurements of temperature, humidity, and vapor pressure deficit (VPD) at the site level as 

well as under grass canopies. 

Results

We found strong cooling effects of the vegetation during the day and warming effects from 

vegetation at night. We found that these effects were strongest on the hottest/driest days and at 

the hottest (and often most urban) sites.

Conclusions
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Our microclimate amelioration data suggest that positive interactions might become stronger 

along urban temperature gradients and may be determining plant interactions in these areas in a 

way that was not previously considered.

Keywords: temperature, humidity, vapor pressure deficit, facilitation, stress gradient hypothesis, 

urban ecology, heat islands, California grasslands
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1 Introduction:

2 The stress gradient hypothesis states that as abiotic or biotic stresses become more harsh, 

3 the effect of positive interactions between neighbors may increase (Bertness & Callaway 1994). 

4 These positive facilitative interactions can vary widely in mechanism. Previous work has shown 

5 that some plant species construct novel environments (e.g. niche construction via structural 

6 support or shade), increase habitat complexity (heterogeneity), increase service sharing (e.g. 

7 pollinator visitation), provide greater access to resources (e.g. nitrogen enrichment from 

8 legumes), and provide abiotic stress amelioration (e.g. soil warning in cold or shading in hot 

9 conditions) (Cavieres et al. 2007; Barbosa et al. 2009; McIntire & Fajardo 2014). When abiotic 

10 or biotic stresses are limiting productivity, the alleviation of these conditions by facilitation may 

11 drive plant-plant interactions more strongly than competition for limiting resources.

12 One type of positive interaction between plants is amelioration of stressful microclimate 

13 conditions (e.g. near-leaf climatic conditions, Brooker et al. 2008). Microclimate amelioration is 

14 a broad concept that can include: mitigation of solar irradiance that is causing photoinhibition 

15 (Kothari et al. 2018), reduction of microclimate VPD (Wright et al. 2015), and retention of soil 

16 water (Caldeira et al. 2001). Simply put, microclimate amelioration is the difference between the 

17 local climatic conditions organisms are experiencing and their macroclimate, or the “free air” 

18 conditions of well-mixed air in nearby open areas (De Frenne et al. 2019). This buffering effect 

19 of vegetation cover has been shown to have many biological impacts. In arid conditions, plants 

20 can increase the water potential of neighbors via physical (e.g. shading) and biological (e.g. 

21 evaporative cooling) mechanisms (Wright et al. 2015). Through evapotranspiration, plants 

22 release water vapor, resulting in a lower near-leaf vapor pressure deficit (VPD; i.e. cooler and 

23 more humid environment) for themselves (Meinzer 1993) and neighboring individuals (Wright et 

24 al. 2014). This is important for plant performance as VPD drives the evaporative pull of the 

25 surrounding air on the leaf (Wever et al. 2002). If plant individuals are exposed to high VPD 

26 conditions for an extended period of time, this increased evaporative pull can cause severe water 

27 stress, embolism, and increased mortality (Kavanagh & Zaerr 1997; Jacobsen et al. 2007).

28 In forests, past work has shown that vegetation can act as a thermal insulator against 

29 warming land temperatures, likely mitigating the negative impacts of climate change on 

30 biodiversity and functioning (De Frenne et al. 2019). Microclimates have also been shown to 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

31 control the rate of range shifts due to climate change-induced macroclimate warming (Zellweger 

32 et al. 2020). Vegetation driven microclimate amelioration has been shown to be biologically 

33 relevant even over short temporal and small spatial scales. Previous research in annual grasslands 

34 has shown that the relative effect of microclimate amelioration can vary on timescales as short as 

35 day-to-day. Wright et al. (2015) showed that on relatively cool and humid days, the effect of 

36 microclimate amelioration was practically non-existent. This meant that plant interactions were 

37 structured entirely by competition for soil water. Conversely, these authors showed that on hotter 

38 and drier days, the effect of microclimate amelioration was much stronger and outweighed the 

39 impact of competition for soil water. 

40 While vegetation driven microclimate amelioration has been examined extensively in the 

41 past in deserts and alpine ecosystems (Brooker et al. 2008), no study to date has assessed this 

42 type of microclimate amelioration in urban ecosystems or along urban temperature gradients. 

43 This is significant given that the stress gradient hypothesis states that microclimate amelioration 

44 via vegetation buffering may increase as abiotic or biotic stresses become more harsh (Wright et 

45 al. 2014; De Frenne et al. 2019). Cities create thermal patches that are significantly warmer than 

46 surrounding rural areas. These so-called “heat islands” (Taha 2017) are caused by high levels of 

47 impervious surfaces that retain thermal energy, higher rates of greenhouse gas emissions, and 

48 reduced airflow due to large buildings (McPherson & Simpson 2003; McPherson et al. 2011; 

49 Stewart & Oke 2012).

50 In cities like Los Angeles, CA, USA, these urban temperature gradients are further 

51 exacerbated by elevational and coastal temperature gradients. In fact, between coastal areas of 

52 Los Angeles county where heat islands dissipate and inland areas where heat islands are quite 

53 strong, there is an average temperature difference of 5-7°C (Taha 2017). Southern California, 

54 where Los Angeles is located, serves as a valuable study system given the ubiquity of grasslands 

55 across these many environmental gradients (Sandel & Dangremond 2012; Valliere et al. 2017). 

56 This allows us to examine microclimate amelioration in the widely used model system, but 

57 across an urban gradient. We thus posit that there should be a gradient of increasing 

58 microclimate amelioration effects in annual grasslands along temperature gradients in and 

59 around Los Angeles County.

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

60 To investigate the change in microclimate effects in urban environments, we will test the 

61 following two hypotheses: (H1) Microclimate amelioration is stronger in hotter areas of Los 

62 Angeles: this includes more urban areas as well as areas further from the coast, (H2) 

63 Microclimate amelioration is stronger on hotter and drier days. 

64 Methods:

65 Study Area: Our study area encompassed the greater Los Angeles area, CA, USA, covering over 

66 10,000 km2 ranging from the San Gabriel mountain range to the north to the Santa Ana mountain 

67 range to the south, and the Los Angeles county barrier to the east (Figure 1a). The Southern 

68 California region, composed of six counties (i.e. Imperial, Los Angeles, Orange, Riverside, San 

69 Bernardino, and Ventura), is located within a Mediterranean climate. Grasslands in this area are 

70 dominated by exotic, mostly annual, grass species from the Mediterranean region that have 

71 established likely due to a history of cattle grazing and changing climate (HilleRisLambers et al. 

72 2010; Sandel & Dangremond 2012). This climate is associated with wet winters with cool 

73 temperatures and dry summers with high temperatures (Gómez et al. 2004). Precipitation during 

74 the growing season (November, December, January, February, March, and April) from 1969-

75 2018 averaged 614.68 mm and ranged between 167.64 mm to 1513.84 mm (Figure 2, PRISM 

76 Climate Group, Oregon State University). Mean surface temperature over the same period of 

77 time was 6.9°C and ranged from 4.6°C to 8.4°C. Precipitation during the growing season in the 

78 year of our study (2019) totaled 918.95 mm. Mean surface temperature was 8.3°C and ranged 

79 from 2.2°C to 12.9°C. Specifically, total precipitation during our data collection (April 8th-22nd, 

80 2019) across all of our sites averaged 4.9 mm and ranged between 0 mm to 12.3 mm (PRISM 

81 Climate Group, Oregon State University). Mean surface temperatures during our data collection 

82 ranged from 13.9°C to 17.8°C.

83 Site Selection: Potential field locations were identified using ArcMap (Version 10.5) where we 

84 selected within a range of a 5-30% slope, ≤ 1,200 m elevation, ≥ 1,400 m2 size, and south-facing 

85 aspect. In order to ensure sampling across urbanization levels without confounding urbanization 

86 with latitude or longitude, we identified 15 quadrants throughout the greater Los Angeles region 

87 (Figure 1b). Seven of these were urban, four were suburban, and four were rural. We then chose 

88 nine quadrants from this total of 15 identified: three quadrants randomly chosen from the four 

89 available were in rural areas, three randomly chosen from four were in suburban areas, and three 

90 randomly chosen from seven were in urban areas. These were large subsections of the city 
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91 wherein we could focus our efforts to delineate candidate green spaces to use as our sampling 

92 sites.

93 Within each of these quadrants, all green spaces that were larger than 100 m2, and met the 

94 above physical criteria, were identified and delineated using ArcGIS. Of these, three local 

95 sampling sites were randomly selected from each of our nine quadrants (27 local sampling sites). 

96 Sampling sites were then ground-truthed to confirm they were unmanaged & unmaintained 

97 grasslands. If a site was being actively managed by the community (e.g. mowing or native 

98 species planting), it was removed from the dataset and replaced with a newly randomly selected 

99 site. This resulted in a total of 27 locations (Figure 1a). At each of these locations three 1 m x 1 

100 m quadrats were randomly selected as our sampling area for our vegetation surveys (81 quadrats 

101 total, Figure 1b). Additionally, we created a circular buffer with a 2 km radius centered in the 

102 geographic middle of our three sampling quadrats and used image classification to determine the 

103 surrounding percent impervious surface of each site (area within the buffer). For each site we 

104 also measured elevation and distance to nearest coastline as two other stronger drivers of 

105 temperature, site humidity, and site VPD along our urban gradient. To determine if there were 

106 differences in soil moisture availability, we measured soil moisture (SM150 soil moisture probe, 

107 Dynamax Inc., Huston, TX, USA) on the day we conducted our vegetation survey at the four 

108 corners of each of our 1m x 1m quadrats. These four measurements per quadrat were averaged 

109 for all analyses.

110 Microclimate Survey: Peak biomass in annual grasslands of Southern California usually happens 

111 in mid-April to late-May (Eviner & Firestone 2007). Because we were interested in the role that 

112 vegetation plays in microclimate amelioration, we thus recorded temperature and humidity at our 

113 sampling area (which we then used to calculate VPD; Walter et al. 2005) over a 15-day period 

114 from April 8th - 22nd, 2019 (n = 27):  

115  Eq. 1��� = (0.6108 × �17.27 × �������� + 237.3 ― (��100
× 0.6108 × �17.27 × �������� + 237.3))

116 Data were collected at 5-minute intervals using iButton dataloggers (DS1922L Thermochron, 

117 Maxim Integrated, San Jose, California) attached to a white 1 m PVC pipe that was stuck 

118 approximately 30 cm into the ground (iButtons were thus ~10 cm from the ground). In order to 

119 see the effect of the plant canopy on these measurements (so-called microclimate amelioration 

120 effects), we installed a pair of dataloggers at each of our 27 sites for a total of 54 individual 
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121 dataloggers (Figure 1c). The first datalogger of the pair was placed within one randomly chosen 

122 quadrat at each site (27 total in the experiment) and installed below the grass canopy at 10 cm 

123 above the soil to determine vegetation induced microclimate conditions. The second datalogger 

124 was placed within five meters, in a bare patch of soil and located the same distance from the 

125 ground and with the same aspect to determine macroclimate conditions (i.e. ambient site 

126 conditions, Figure 1c). Dataloggers were wrapped in No. 14 fiberglass screen mesh that provides 

127 over 75% of UV protection. This was done to ensure proper airflow and reduce direct irradiation 

128 off the metal surface of the datalogger (thus increasing surface temperatures above ambient 

129 conditions). After dataloggers had been wrapped in mesh they were secured to white PVC with 

130 cable ties. Once collected, microclimate data were categorized into “Day” and “Night” hours to 

131 examine site effects for day and night separately. “Day” hours spanned from sunrise to sunset, 

132 whereas “night” hours were from sunset and sunrise. Sunrise and sunset were based on times 

133 from the first day of our study period (April 8th, 2019).

134 Vegetation Survey: In order to ensure that differences in community composition along this 

135 urban gradient were not driving any observed microclimate effects, we conducted vegetation 

136 surveys at each of our sites (Appendix S1). During April 2019, we determined species identity 

137 and abundance at each of 81 quadrats at our 27 sites. In addition to our microclimate sampling 

138 quadrat, we sampled two additional 1 m x 1 m sampling quadrats to measure percent cover of all 

139 species (Figure 1a). We selected these additional quadrats to ensure that we were not missing 

140 rare species that may play an important role in this ecosystem. For plants that we could not 

141 identify to the species-level we grouped them as one genera. In order to estimate abundance, we 

142 visually determined percent cover of each individual species in each quadrat. We also measured 

143 percent cover of bare soil (i.e. where no vegetation was present) to determine vegetation density 

144 in each quadrat. Given that above average spring rainfall extends the flowering season for 

145 California grassland species (Figure 2, Harrison 1999), we were able to sample early-flowering 

146 species (e.g. Phacelia campanularia, Boraginaceae) to late-flowering species (e.g. Centaurea 

147 melitensis, Asteraceae). 

148 At each of the three quadrats per site we used our species abundance and evenness data to 

149 determine site diversity using the Shannon diversity index (Shannon & Weaver 1964). We also 

150 assessed multidimensional scaling (NMDS) axes that summarized community composition from 

151 our vegetation survey with RStudio statistical computing software version 2.2-2 (RStudio Team 
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152 2020), nlme (v3.1-148; Jose Pinheiro et al. 2020), lme4 (v1.1-23; Bates et al. 2015), and 

153 AICcmodavg (v2.3-0; Mazerolle 2020) packages. Ordination via NMDS was used to determine 

154 patterns in community composition and was conducted using the vegan package (Appendix S2; 

155 v2.5-6; Oksanen et al. 2019; Orme 2012). We found that our first three axes returned a stress 

156 value of 0.152. Given that this provides a relatively good fit (Kwak & Peterson 2007), we limited 

157 our subsequent analyses to the first three axes.

158 Data Analysis:

159 Macroclimate gradients: biogeographical factors

160 To address the first part of hypothesis one (whether urbanization and coastal effects drive 

161 changes in macroclimate factors), we ran multiple linear mixed-effects models using the lme4 

162 package (Appendix S3a; v1.1-23; Bates et al. 2015). We used a dataset wherein macroclimate 

163 data (temperature, humidity, and VPD) were averaged across the study period at each site (i.e. 

164 we computed the mean over the entire study period for a given plot location). We used this 

165 dataset as we were concerned with how some areas of the city are hotter than other areas of the 

166 city on average, rather than how they vary on a daily basis. We included quadrant as a random 

167 effect to account for the blocking effect of sampling sites clustering within their respective 

168 quadrants (Figure 1a). Surrounding percent impervious surface, elevation, and distance from 

169 nearest coast were all individually included as continuous fixed effects. Average site temperature 

170 (averaged over the entire study period), humidity, VPD, and average site soil moisture were 

171 included as continuous response variables (nlme package v.3.1-148; Jose Pinheiro et al. 2020).

172 Microclimate gradients: differences between sites

173 To address the second part of our first hypothesis, that microclimate amelioration is 

174 stronger in hotter areas of the city, we conducted a linear mixed-effects model selection to 

175 determine which factors best explained microclimate amelioration. We measured microclimate 

176 amelioration as:

177  Eq. 2������������ ������������ = ������―������
178 Where macro is the temperature measured by the iButton in a nearby bareground area, micro is 

179 the temperature measured by the iButton under the vegetation, and i represents the site (27 total, 

180 Figure 1c). For this model selection we used a dataset wherein microclimate amelioration data 

181 (temperature, humidity, and VPD) were averaged across the study period at each site (i.e. we 

182 computed the mean over the entire study period for a given plot location), because we were 
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183 interested in the average site effects at each of our study locations for this first hypothesis (not 

184 variation from one day to the next). Our model structure had microclimate amelioration (Eq. 2) 

185 as our response variable and permutations of macroclimate temperature, elevation, distance to 

186 coast, percent impervious surface, Shannon diversity, percent bare ground, and NMDS axes 1-3 

187 as our independent variables (Appendix S3b). We included quadrant as a random effect given the 

188 spatial blocking in our sampling design (sites within the same quadrant may be more similar to 

189 one another than to other sites within the dataset). Based on the a priori design of the 

190 experiment, we necessarily included a random effect for quadrant and a fixed effect for 

191 macroclimate temperature in all candidate models; Appendix S3c). We calculated R2 values for 

192 each model using the sjstats package (v0.18.0; Ludecke 2020). We also conducted a multivariate 

193 correlation matrix (Table 3) to determine if any of these factors were collinear. We found that 

194 some factors crossed the 0.5 threshold (our strongest was a negative 0.519 correlation) where 

195 collinearity could be determined as high (Dormann et al. 2013). To confirm factors were still 

196 within acceptable levels of correlation, we determined the variance inflation factor (VIF) using 

197 the caret package (v.6.0-86; Kuhn 2020) for all factors and found relatively low correlations with 

198 the highest correlation being Shannon index with a score of 3.03. We then used our best fit 

199 model and report on the Type I ANOVA results for all main effects associated with this model 

200 using the lmerTest package (v.3.1-2; Kuznetsova et al. 2017).

201 Microclimate gradients: differences between days

202 In order to address our second hypothesis, that microclimate amelioration should be 

203 stronger on hotter and drier days, we used a dataset wherein microclimate data were separated 

204 into daily measurements at each site (daily measurements per plot) and averaged over each 24-

205 hour period. Our model structure for these analyses differed slightly from the structure for our 

206 site averages (Appendix S3d). We retained individual macroclimate predictors (e.g. macro-

207 temperature, macro-humidity, and macro-VPD) and their effects on each individual aspect of 

208 microclimate amelioration (micro-temperature, micro-humidity, and micro-VPD respectively, 

209 Eq. 2) given that these were measured daily. We included sampling site nested in quadrant as a 

210 random effect given that each sampling site can only occur in its respective quadrant. 

211 Additionally, since all sampling sites were surveyed at every date, we included date as a crossed 

212 random effect in our model structure. We report on the Type I ANOVA results for these models 

213 using the lmerTest package (v.3.1-2; Kuznetsova et al. 2017). Using this model structure, we 
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214 then ran the same analyses using our “day” and “night” datasets to see if there were differences 

215 during the warmest and coolest parts of the day.

216 Results

217 Macroclimate gradients: biogeographic factors

218 In line with hypothesis one, we found that percent impervious surface had a positive 

219 effect on average site temperature but had no effect on humidity or VPD (Table 1, Figure 2a). 

220 Additionally, we found that elevation had a negative effect on temperature but did not have an 

221 effect on humidity or VPD (Table 1, Figure 2b). Increasing distance from nearest coast did not 

222 have an effect on any of our abiotic variables (Table 1). Due to the nature of urban development 

223 in Los Angeles, our rural locations were at higher elevations than our suburban and urban 

224 locations (Figure 2c). Site average soil moisture did not vary as a function of percent 

225 development (F1, 15 = 1.91, p = 0.19), elevation (F1, 15 = 1.25, p = 0.28), or distance to coast (F1, 15 

226 = 0.16, p = 0.69). 

227 Microclimate gradients: differences between sites

228 We found that the best-fit model for site-level temperature amelioration included average 

229 site temperature and NMDS Axis 2 (Table 2). Analyzing this model using the linear mixed 

230 effects model framework showed that macroclimate temperature had a positive effect on the 

231 strength of microclimate temperature amelioration (F1,16 =4.32, p = 0.054; Figure 3) while 

232 NMDS Axis 2 had no effect on microclimate temperature amelioration (F1,16 = 1.46, p = 0.24). 

233 We decided to maintain this overall model structure for all microclimate amelioration analyses to 

234 better compare the model effects on all three aspects of microclimate amelioration (temperature, 

235 humidity, and VPD). There were no other significant effects of macro-humidity or macro-VPD 

236 on average microclimate amelioration between sites. 

237 Microclimate gradients: differences between days

238 We found that as daily site temperatures increased, the temperature under the plant 

239 canopy warmed less than ambient conditions (F1, 38.5 = 71.49, p < 0.001; Figure 4a). 

240 Additionally, we found that as daily humidity decreased at sites, the humidity under the plant 

241 canopy retained more moisture (F1, 128.6 = 170.65, p < 0.001; Figure 4b). Measures of VPD 

242 showed that on days where there was increasingly high VPD (hot and dry days), the plant canopy 

243 had an increasingly strong effect on VPD reduction (it was cooler and more humid under the 

244 plants (F1, 196.3 = 155.85, p < 0.001 Figure 4c).
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245 We also found strong day / night differences in temperature, humidity, and VPD (Figure 

246 4). When examined during daytime hours (daily sunrise to sunset), the plant canopy had a strong 

247 cooling effect on temperature (F1, 29.5 = 84.42, p < 0.001; Figure 4d), approached significance for 

248 reducing humidity (F1, 25.7 = 3.22, p = 0.084; Figure 4e), and a moderating effect on daytime 

249 VPD (F1, 141.9 = 153.88; Figure 4f). In general, nighttime effects showed the opposite: as 

250 temperatures decreased, the air under the plant canopy was warmer than ambient temperatures 

251 (F1, 21.1 = 73.61, p < 0.001; Figure 4g), while humidity levels were lower (F1, 40.2 = 192.13, p < 

252 0.001; Figure 4h), and VPD was lower (F1, 48.7 = 132.89, p < 0.001; Figure 4i). 

253 Discussion

254 We found evidence for variation in the strength of microclimate amelioration along an 

255 urban to rural gradient in the greater Los Angeles county area. We found support for our 

256 hypothesis that during the day, more densely developed sites were hotter and these hotter sites 

257 experienced progressively stronger microclimate amelioration effects. For sites that had an 

258 average macroclimate (i.e. bare ground, soil-level) temperature of 14°C during our April study 

259 period (e.g. Briar Summit), there was an average temperature reduction of 2°C in their 

260 microclimate (i.e. under the vegetation) across the entire study period. Conversely, sites that had 

261 cooler average temperatures (in more rural areas) experienced weaker microclimate amelioration 

262 effects. Sites that had an average temperature of 7°C (e.g. Musch Meadows) had no average 

263 change in under canopy microclimate. While our data set is limited (due to number of sites and 

264 days sampled), plant individuals in locations across this urban temperature gradient appear to 

265 experience different microsite conditions, at least for part of their growing season.

266 These data also support our hypothesis that hotter days result in stronger microclimate 

267 amelioration. All three measures of microclimate (i.e. temperature, humidity, and VPD) 

268 responded differently in under-canopy measurements. Higher temperatures were cooled during 

269 the day while cooler temperatures were warmed during the night. These effects were particularly 

270 noticeable on hot, dry days where we saw a strong buffering effect of vegetation. When we 

271 looked at vegetation effects in terms of humidity, we found there was only a weak effect of 

272 vegetation on humidity during daylight hours. However, when nighttime macroclimate humidity 

273 was low, under-canopy humidity was increased. During both day and night, high VPD was 

274 decreased under the plant canopy.
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275 These findings are consistent with previous research showing that vegetation driven 

276 microclimate amelioration can increase during periods of warming and drought (Wright et al. 

277 2015; De Frenne et al. 2019; Zellweger et al. 2020). In a global meta-analysis, De Frenne et al. 

278 (2019) demonstrated that maximum and mean temperatures were consistently cooler and 

279 minimum temperatures were consistently warmer within forests compared to free-air 

280 temperatures. During one season, we report similar trends in short-stature annual grasslands. We 

281 report that not only was microclimate amelioration generally stronger at hotter sites, but 

282 regardless of location, there were differences in microclimate depending on daily environmental 

283 severity (temperature and humidity). The stress-gradient hypothesis not only appears to be 

284 functioning across a physical gradient, but a temporal environmental gradient experienced by all 

285 sites as well. 

286 The alleviation of these abiotic conditions is particularly important in Southern 

287 California’s arid Mediterranean climate. Evapotranspiration is higher from surfaces receiving 

288 more solar energy and from more exposed locations where wind speeds are higher (Bramer et al. 

289 2018). Lower irradiation often results in plant individuals that are less water stressed and 

290 photoinhibited under the plant canopy, potentially increasing survival rates (Baquedano & 

291 Castillo 2006). Increasing microclimate humidity also has beneficial effects, given that stomatal 

292 conductance is directly linked to humidity near the leaf (Wever et al. 2002). 

293 Further, these shifts in microclimate conditions may be particularly important in the 

294 context of climate change. The growing season in California annual grasslands begins in 

295 November and ends in May, when average daytime VPD ranges from around 0 – 2 kPa (Ryu et 

296 al. 2008). As aridity is expected to increase in the Southwest in the future (Cook et al. 2015), the 

297 ability to maintain VPD values below 2 kPa may become more important to mitigate the regional 

298 effects of warming and drought. In fact, previous research in other grasslands and croplands has 

299 shown that reductions in vapor pressure deficit from 2 kPa to 1 kPa can cause significant 

300 increases in overall herbaceous plant growth (Ray et al. 2002; Wright et al. 2014).

301 We also found evidence for nighttime buffering of lower temperatures. Unlike daytime 

302 heat mitigation which may be partially driven by evapotranspiration (Wright et al. 2015), this 

303 nighttime buffering is possibly driven by two separate mechanisms. The first is a physical 

304 mechanism: vegetation may insulate and capture heat that is either captured during daylight 

305 hours or re-radiated from the soil surface at night. In fact, during the night in open (i.e. non-
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306 vegetated) areas, ground temperatures can even be cooler than air temperatures above the 

307 boundary layer (Bramer et al. 2018). Past work has shown that vegetation can effectively buffer 

308 against negative effects of wind and provide thermal amelioration in forest and alpine systems 

309 (Callaway et al. 2002; Arroyo et al. 2003; Cavieres et al. 2006; De Frenne et al. 2019). Further 

310 support for this comes from studies showing that microstructures such as stumps and branches 

311 reduce wind velocities, consequently increasing plot temperatures (Proe et al. 2001). There may 

312 be higher temperatures in our nighttime plots via a physical blocking of wind resulting in higher 

313 retention of thermal energy.

314 The second mechanism driving nighttime microclimate amelioration may be nighttime 

315 transpiration, the process of water movement through a plant ending with its evaporation from 

316 the stem or leaf surface. In a metanalysis by Dawson et al. (2007), the authors showed that many 

317 plant species perform nighttime transpiration, sometimes accounting for a significant fraction of 

318 total daily water use. This was particularly true in drought-prone ecosystems where nighttime 

319 VPD exceeded ~0.7 kPa (Dawson et al. 2007). While we did not directly measure stomatal 

320 conductance or transpiration, our data show a similar trend. We found that as nighttime VPD 

321 increased, under canopy humidity increased (Appendix S4). In our plots that had nighttime VPD 

322 values above 0.7 kPa, there was an average increase in humidity by 4.6% from ambient levels. 

323 Future studies should look more directly into transpiration of these annual grasslands as the 

324 water budgets in these systems may be influenced by nighttime transpiration effects (Dawson et 

325 al. 2007).

326 Conclusion

327 Our data support the hypothesis that vegetation driven microclimate amelioration is 

328 stronger in hotter, more stressful area of an urban ecosystem. These data also support the theory 

329 that there are temporal shifts in biotic interactions that may occur from day to day between the 

330 same neighbors (Wright et al. 2014; De Frenne et al. 2019). Not only did we find hotter sites had 

331 higher instances of microclimate amelioration, but that amelioration had daily variation. Given 

332 the magnitude of microclimate amelioration seen in our data, future work should focus on 

333 whether there is a shift from competitive to facilitative species interactions across this gradient. 

334 Should there be significant influences on species interactions due to microclimate effects, it may 

335 better inform how we can manage plant communities in developed areas. 
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466

467

468 Tables

469 Table 1. We used a linear mixed-effects model to assess the effects of percent impervious 

470 surfaces (Percent Dev), elevation (m), and distance from coast (km) on average daily 

471 temperatures (°C), percent relative humidity, and vapor pressure deficit (kPa). We included 

472 quadrant as a random effect given the blocked nature of our sampling design. Site temperature, 

473 humidity, and VPD were collected at each site using iButton dataloggers.

Fixed Effect Random 

Effect

Site Temperature Humidity VPD

df F P df F P df F P

Percent Dev Quadrant 1, 17 4.03 0.061* 1, 17 0.22 0.65 1, 17 0.18 0.67

Elevation Quadrant 1, 17 6.79 0.019* 1, 17 1.09 0.31 1, 17 0.28 0.60

Distance 

From Coast

Quadrant 1, 17 15.93 0.744 1, 17 2.98 0.10 1, 17 0.0096 0.92

474

475 Table 2. Model selection for what factors best fit temperature amelioration. Factors included 

476 were macro-temperature (Macrotemp), alpha diversity from our Shannon Diversity index 

477 calculation (Alpha), NMDS axes 1-3, and percent bare ground of quadrat (Ground). Quadrant 

478 was included as a random effect in each model to account for the blocking effect of sampling 

479 sites clustering within their respective quadrants.

480

Model K AICc Delta_AICc AICcWt Cum_Wt Res_LL R2

Macrotemp NMDS2 5 124.41 0.00 0.16 0.16 -55.77 0.266

Macrotemp 4 124.43 0.03 0.15 0.31 -57.31 0.230

Macrotemp Alpha 5 125.40 0.99 0.10 0.41 -56.31 0.220

Macrotemp Alpha NMDS2 6 125.59 1.19 0.09 0.49 -54.70 0.261

Macrotemp NMDS3 5 125.70 1.29 0.08 0.57 -56.42 0.263

Macrotemp NMDS2 NMDS3 6 126.06 1.66 0.07 0.64 -54.93 0.265
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Macrotemp NMDS1 5 126.43 2.02 0.06 0.70 -56.79 0.212

Macrotemp NMDS1 NMDS2 6 126.70 2.29 0.05 0.75 -55.25 0.240

Macrotemp Alpha NMDS3 6 126.78 2.37 0.05 0.80 -55.29 0.250

Macrotemp Alpha NMDS2 NMDS3 7 127.32 2.92 0.04 0.83 -53.71 0.244

Macrotemp Alpha NMDS1 6 127.36 2.96 0.04 0.87 -55.58 0.184

Macrotemp Alpha NMDS1 NMDS2 7 127.95 3.54 0.03 0.90 -54.03 0.245

Macrotemp NMDS1 NMDS3 6 127.95 3.54 0.03 0.92 -55.87 0.242

Macrotemp Alpha NMDS1 NMDS3 7 128.86 4.45 0.02 0.94 -54.48 0.209

Macrotemp Ground 5 129.28 4.87 0.01 0.95 -58.14 0.310

Macrotemp NMDS2 Ground 6 129.42 5.01 0.01 0.97 -56.50 0.333

Macrotemp Alpha NMDS1 NMDS2 

NMDS3

8 129.80 5.39 0.01 0.98 -52.90 0.227

Macrotemp Alpha Ground 6 130.45 6.04 0.01 0.98 -57.01 0.303

Macrotemp NMDS3 Ground 6 130.60 6.19 0.01 0.99 -57.09 0.326

Macrotemp NMDS1 Ground 6 131.61 7.20 0.00 0.99 -57.59 0.296

Macrotemp Alpha NMDS2 NMDS3 

Ground

8 132.75 8.35 0.00 1.00 -54.14 0.325

Macrotemp Alpha NMDS1 NMDS2 

Ground

8 133.82 9.42 0.00 1.00 -54.68 0.302

Macrotemp Alpha NMDS1 NMDS3 

Ground

8 134.63 10.22 0.00 1.00 -55.08 0.209

Macrotemp Alpha NMDS1 NMDS2 

NMDS3 Ground

9 135.79 11.38 0.00 1.00 -53.27 0.318

481

482 Table 3. Multivariate correlation matrix for factors used in model selection. Factors included 

483 were macro-temperature, alpha diversity (Shannon’s index), axis one of our NMDS, axis two of 

484 our NMDS, axis three of our NMDS, and percent bare ground.

485

MacroTemp Alpha NMDS1 NMDS2 NMDS3 Bare Ground

MacroTemp -0.433 -0.462 -0.030 -0.240 0.041

Alpha -0.433 0.566 -0.371 0.365 0.086

NMDS1 -0.462 0.566 -0.057 -0.014 0.021

NMDS2 -0.030 -0.371 -0.057 0.295 0.088

NMDS3 -0.240 0.365 -0.014 0.295 0.409

Bare Ground 0.041 0.086 0.021 0.088 0.409
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487 Figures

488

489 Figure 1. (a) Map of sampling sites across the greater Los Angeles region. Orange polygons 

490 depict quadrants, yellow squares depict sampling sites, and blue crosses depict 1 m x 1m 

491 quadrats (only one site shown in figure). (b) Conceptual figure of our sampling design with 

492 colors corresponding to panel a. (c) Example of a datalogger installed under-canopy for 

493 microclimate (left) and example of a datalogger installed in bare ground for macroclimate 

494 conditions (right).

495

496

497 Figure 2. The effects of abiotic factors on macroclimate temperature. We gathered temperature 

498 data every 5 minutes from iButton dataloggers over the course of two weeks at each site. We 

499 assessed (a) the effect of percent impervious surface (Percent Development) on average 

500 temperature at the sites (°C), (b) the effect of elevation on average temperature at the sites, and 

501 (c) the correlation between percent impervious surface (Percent Development) and elevation.
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502

503

504 Figure 3. The effect of average site temperature on microclimate amelioration. We gathered 

505 temperature data every 5 minutes from iButton dataloggers and averaged these values across the 

506 entire two-week period for each site. The dashed line represents no difference between ambient 

507 and under-canopy measurements. Points represent a warming (higher than 0) or cooling (lower 
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508 than 0) effect of vegetation. 

509

510

511 Figure 4. We measured site conditions (x-axes) and microclimate amelioration variables (y-axes) 

512 across 24-hour periods (a-c), daylight hours (d-f), and nighttime hours (g-i). Each point 

513 represents the average value at that site on that day. Dashed lines represent no difference 

514 between ambient and under-canopy measurements. In the case of temperature, points represent a 

515 warming (higher than 0) or cooling (lower than 0) effect of vegetation.A
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Figure 3. The effect of average site temperature on microclimate amelioration. We gathered 

temperature data every 5 minutes from iButton dataloggers and averaged these values across the 

entire two-week period for each site. The dashed line represents no difference between ambient 

and under-canopy measurements. Points represent a warming (higher than 0) or cooling (lower 

than 0) effect of vegetation.
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Figure 4. We measured site conditions (x-axes) and microclimate amelioration variables (y-axes) 

across 24-hour periods (a-c), daylight hours (d-f), and nighttime hours (g-i). Each point 

represents the average value at that site on that day. Dashed lines represent no difference 

between ambient and under-canopy measurements. In the case of temperature, points represent a 

warming (higher than 0) or cooling (lower than 0) effect of vegetation. 
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